Some new Farkas-type results for inequality systems with DC functions
نویسندگان
چکیده
We present some Farkas-type results for inequality systems involving finitely many DC functions. To this end we use the so-called FenchelLagrange duality approach applied to an optimization problem with DC objective function and DC inequality constraints. Some recently obtained Farkas-type results are rediscovered as special cases of our main result.
منابع مشابه
Some new variants of interval-valued Gronwall type inequalities on time scales
By using an efficient partial order and concept of gH-differentiability oninterval-valued functions, we investigate some new variants of Gronwall typeinequalities on time scales, which provide explicit bounds on unknownfunctions. Our results not only unify and extend some continuousinequalities, but also in discrete case, all are new.
متن کاملFarkas-type results for inequality systems with composed convex functions via conjugate duality
We present some Farkas-type results for inequality systems involving finitely many functions. Therefore we use a conjugate duality approach applied to an optimization problem with a composed convex objective function and convex inequality constraints. Some recently obtained results are rediscovered as special cases of our main result.
متن کاملFarkas-Type Results With Conjugate Functions
Abstract. We present some new Farkas-type results for inequality systems involving a finite as well as an infinite number of convex constraints. For this, we use two kinds of conjugate dual problems, namely an extended Fenchel-type dual problem and the recently introduced FenchelLagrange dual problem. For the latter, which is a ”combination” of the classical Fenchel and Lagrange duals, the stro...
متن کاملCharacterizing global optimality for DC optimization problems under convex inequality constraints
Characterizations of global optimality are given for general difference convex (DC) optimization problems involving convex inequality constraints. These results are obtained in terms of E-subdifferentials of the objective and constraint functions and do not require any regularity condition. An extension of Farkas’ lemma is obtained for inequality systems involving convex functions and is used t...
متن کاملComments on: Farkas’ lemma: three decades of generalizations for mathematical optimization
The celebrated Farkas lemma originated in Farkas (1902) provides us an attractively simple and extremely useful characterization for a linear inequality to be a consequence of a linear inequality system on the Euclidean space Rn . This lemma has been extensively studied and extended in many directions, including conic systems (linear, sublinear, convex), infinite/semi-infinite convex inequality...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Global Optimization
دوره 39 شماره
صفحات -
تاریخ انتشار 2007